
On Criteria for imaginary roots *

Leonhard Euler

§313 In the preceding chapter we exhibited a method to explore the nature
of roots of any equation such that by means of it, if any arbitrary equation
is propounded, one can find out, how many real and imaginray roots it has.
In most cases, this investigation is certainly most difficult, if the differential
equation is of such a nature that its roots cannot be exhibited. But although in
these cases the same operation could be applied to the differential equation
itself and the nature of its roots could be explored from its differential and
hence the roots of the original equation could be assigned approximately, the
work would nevertheless be too cumbersome in almost every case. Therefore,
in this case it often suffices to know criteria from which, if the their conditions
are fulfilled, one can conclude that the propounded equation contains imagi-
nary roots, even though, if the conditions are not fulfilled, one can vice versa
not infer that all roots are real. Even if then the knowledge is not complete, it
will be useful very often; therefore, we dedicated the present chapter to the
explanation of these criteria.

§314 So, in the preceding chapter we saw, if any arbitrary equation

z = xn − Axn−1 + Bxn−2 − Cxn−3 + Dxn−4 − etc. = 0

has only real roots that then its differential
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translated by: Alexander Aycock for the „Euler-Kreis Mainz“
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dz
dx

= nxn−1 − (n − 1)Axn−2 + (n − 2)Bxn−3 − (n − 3)Cxn−4 + etc. = 0

will have also only real roots. But at the same time we showed, even though
the differential equation only has real roots, hence it nevertheless does not
follow that all roots of the propounded equation are real. Nevertheless, if
the differential equation has imaginary roots, then we will always be able
to conclude that the propounded equation itself must at least have as many
imaginary roots. I say at least; for, it can happen that the equation has more
imaginary roots. Therefore, this way from the differential equation one cannot
conclude more than, if it has imaginary roots, that the propounded equation
must also have roots of such a kind, and at least as many.

§315 If the propounded equation is multiplied by any power xm, while m
denotes a positive integer, because this new equation will have only real
roots, if all roots of the propounded one were real, then also the roots of
its differential, after having divided by xm−1, will all be real. Hence, if this
equation

xn − Axn−1 + Bxn−2 − Cxn−3 + Dxn−4 − etc. = 0

has only real roots, then also this equation

(m + n)xn − (m + n − 1)Axn−1 + (m + n − 2)Bxn−2 − etc. = 0

will have only real roots. For the same reason, if this equation is multiplied by
xk and differentiated again, the resulting equation

(m+n)(k+n)xn − (m+n+−1)(k+n− 1)Axn−1 +(m+n− 2)(k+n− 2)Bxn−2 − etc. = 0

will still have real roots and so one can continue arbitrarily far. But if an
equation of this kind is detected to have imaginary roots, then it will be
certain at the same time that the propounded equation will have at least as
many imaginary roots.
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§316 If the propounded equation, before it is differentiated, is multiplied by
no power of x, then the decision is to be made for an equation of one degree
lower. So, if the propounded equation

xn − Axn−1 + Bxn−2 − Cxn−3 + etc. = 0

has only real roots, then also all roots of its differentials of all orders will be
real. Hence also the roots of all the following equations will be real

nxn−1 − (n − 1)Axn−2 + (n − 2)Bxn−3 − (n − 3)Cxn−4 + etc. = 0,

n(n − 1)xn−2 − (n − 1)(n − 2)Axn−3 + (n − 2)(n − 3)Bxn−4 − etc. = 0,

n(n − 1)(n − 2)xn−3 − (n − 1)(n − 2)(n − 3)Axn−4 + etc. = 0,

n(n − 1)(n − 2)(n − 3)xn−4 − (n − 1)(n − 2)(n − 3)(n − 4)AXn−5 + etc. = 0

etc.,

which equations are reduced to the following forms

xn−1 − n − 1
n

Axn−2 +
(n − 1)(n − 2)

n(n − 1)
Bxn−3 − (n − 1)(n − 2)(n − 3)

n(n − 1)(n − 2)
Cxn−4 + etc. = 0,

xn−2 − n − 2
n

Axn−3 +
(n − 2)(n − 3)

n(n − 1)
Bxn−4 − (n − 2)(n − 3)(n − 4)

n(n − 1)(n − 2)
Cxn−5 + etc. = 0,

xn−3 − n − 3
n

Axn−4 +
(n − 3)(n − 4)

n(n − 1)
Bxn−5 − (n − 3)(n − 4)(n − 5)

n(n − 1)(n − 2)
Cxn−6 + etc. = 0,

xn−4 − n − 4
n

Axn−5 +
(n − 4)(n − 5)

n(n − 1)
Bxn−6 − (n − 4)(n − 5)(n − 6)

n(n − 1)(n − 2)
Cxn−7 + etc. = 0

etc.

§317 Therefore, this way the decision can be reduced to an equation of
given lower degree than the propounded one itself. So, if m was any arbitrary
number smaller than n, then, if the propounded equation has only real roots,
then also all roots of this equation of degree m will be real

xm − m
n

Axm−1 +
m(m − 1)
n(n − 1)

Bxm−2 − m(m − 1)(m − 2)
n(n − 1)(n − 2)

Cxm−3 + etc. = 0.

Hence, if one puts m = 2, this equation will result
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x2 − 2
n

Ax +
2 · 1

n(n − 1)
B = 0,

whose roots will have to be real, if the propounded equation

xn − Axn−1 + Bxn−2 − Cxn−3 + etc. = 0

has only real roots. But because this quadratic equation can only have real
roots, if it is AA

nn > 2·1
n(n−1)B, it follows that all roots of the propounded equation

can only be real, if it is AA > 2n
2n−1 B. Therefore, if it was AA < 2n

2n−1 B, this
will be a certain sign that at least two roots of the propounded equation will
be imaginary.

§318 Hence we obtained a necessary condition, which the coefficients of the
three first terms have to satisfy, if all roots of the propounded equation were
real. And this is a criterion of such kind we mentioned at the beginning: Even
though in the case AA > 2n

n−1 B nothing follows for the realness of the roots, if
it is AA < 2n

n−1 B, it will nevertheless be a certain sign for the existence of at
least two imaginary roots. So for all roots be real, by successively substituting
the numbers 2, 3, 4, 5 etc. for n it has to be as follows:

x2 − Ax + B = 0 A2 > 4B

x3 − Ax2 + Bx − C = 0 A2 >
6
2

B

x4 − Ax3 + Bx2 − Cx + D = 0 A2 >
8
3

B

x5 − Ax4 + Bx3 − Cx2 + Dx − E = 0 A2 >
10
4

B.

Hence, if the second term is missing and the coefficient B of the third is
positive that the equation is of this kind

xn + Bxn−1 − Cxn−3 + Dxn−4 − etc. = 0,

all roots cannot be real, but at least two will be imaginary.

§319 Criteria of this kind can indeed be found for the coefficients of the
following terms, if we consider that this equation
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1 − Ay + By2 − Cy3 + Dy4 − etc. = 0

has as many real and imaginary roots as the propounded equation itself. For,
this equation results from the given one, if one puts x = 1

y such that from
the roots of this equation one at the same time knows the roots of the latter.
Hence, if the propounded equation has only real roots, then also all roots of
the differential equation of the reciprocal equation, namely of this one

−A + 2By − 3Cy2 + 4Dy3 − etc. = 0,

will be real. Substitute x for 1
y in this equation again and this equation will

result

Axn−1 − 2Bxn−2 + 3Cxn−3 − 4Dxn−4 + etc. = 0,

whose roots will therefore be real, if the roots of the propounded equation
were real. Hence it is now plain, if it was n = 3, that it is necessary that it is
BB > 3AC.

§320 But now differentiate this equation again and these equations will
result

Axn−2 − 2(n − 2)
n − 1

Bxn−3 +
3(n − 2)(n − 3)
(n − 1)(n − 2)

Cxn−4 − etc. = 0

Axn−3 − 2(n − 3)
n − 1

Bxn−4 +
3(n − 3)(n − 4)
(n − 1)(n − 2)

Cxn−5 − etc. = 0

Axn−4 − 2(n − 4)
n − 1

Bxn−5 +
3(n − 4)(n − 5)
(n − 1)(n − 2)

Cxn−6 − etc. = 0

etc.

Therefore, in general, if the number m is smaller than n, it will be

Axm − 2m
n − 1

Bxm−1 +
3m(m − 1)

(n − 1)(n − 2)
Cxm−2 − etc. = 0.

If one now puts m = 2, one will have this equation

Ax2 − 4
n − 1

Bx +
6

(n − 1)(n − 2)
C = 0;

5



for its roots to be real it is necessary that it is 4BB
(n−1)2 > 6AC

(n−1)(n−2) . Hence, if the
propounded equation has only real roots, it will be

BB >
3(n − 1)
2(n − 2)

AC.

And if it was BB < 3(n−1)
2(n−2) AC, this is a certain sign that the propounded

equation has at least two imaginary roots. Therefore, if it is n = 3, the criterion
will be BB > 3AC; but if n = 4, it will be BB > 3·3

2·2 AC; if n = 5, it will be
BB > 3·4

2·3 AC and so forth.

§321 To transfer these criteria to the following coefficients, let us consider
the differential equation expressed in y again

−A + 2By − 3Cy2 + 4Dy3 − 5Ey4 + etc. = 0

and let us differentiate it once more that we have

2B − 6Cy + 12Dy2 − 20Ey3 + etc. = 0,

which having substituted 1
x for y again will give

Bxn−2 − 3Cxn−3 + 6Dxn−4 − 10Exn−5 + etc. = 0,

from whose further differentiation this equation follows

Bxn−3 − 3(n − 3)
n − 2

Cxn−4 +
6(n − 3)(n − 4)
(n − 2)(n − 3)

Dxn−5 − etc. = 0

and in general

Bxm − 3m
n − 2

Cxm−1 +
6m(m − 1)

(n − 2)(n − 3)
Dxm−3 − etc. = 0.

Therefore, if we put m = 2 in general, this quadratic equation will result

Bx2 − 2 · 3
n − 2

Cx +
6 · 2

(n − 2)(n − 3)
D = 0,

whose roots will be real, if it was )CC
(n−2)2 > 6·2BD

(n−2)(n−3) or

CC >
4(n − 2)
3(n − 3)

BD.
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Hence, if the propounded equation has only real roots, it will be CC >
4(n−2)
3(n−3)BD, and if this condition is not fulfilled, the equation will certainly have
at least two imaginary roots.

§322 If we differentiate the above equation 2B − 6Cy + 12Dy2 − etc. = 0
once again, this equation will result

−6C + 24Dy − 60Ey2 + etc. = 0

or

C − 4Dy + 10Ey2 − 20Fy3 + etc. = 0,

which having substituted x for 1
y again will go over into this one

Cxn−3 − 4Dxn−4 + 10Exn−5 − 20Fxn−6 + etc. = 0,

from whose further differentiation these equations follow

Cxn−4 − 4(n − 4)
n − 3

Dxn−5 +
10(n − 4)(n − 5)
(n − 3)(n − 4)

Exn−6 − etc. = 0,

Cxn−5 − 4(n − 5)
n − 3

Dxn−6 +
10(n − 5)(n − 6)
(n − 3)(n − 4)

Exn−7 − etc. = 0

and in general

Cxm − 4m
n − 3

Dxm−1 +
10m(m − 1)

(n − 3)(n − 4)
Exm−2 − etc. = 0.

Let us put m = 2 and it will be

Cx2 − 2 · 4
n − 3

Dx +
2 · 10

(n − 3)(n − 4)
E = 0,

from which, if its roots are real, it follows that it will be

4 · 4
(n − 3)2 >

2 · 10
(n − 3)(n − 4)

CE or DD >
5(n − 3)
4(n − 4)

CE.
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§323 From these one already clearly sees the relation for all coefficients.
Therefore, in general, if this equation

xn − Axn−1 + Bxn−2 − Cxn−3 + Dxn−4 − Exn−5 + etc. = 0

has only real roots, it will be

AA >
2n

1(n − 1)
B

BB >
3(n − 1)
2(n − 2)

AC

CC >
4(n − 2)
3(n − 3)

BD

DD >
5(n − 3)
4(n − 4)

CE

EE >
6(n − 4)
5(n − 5)

DF

etc.

If one of these conditions is missing, the equation will have at least two
imaginary roots. And if these criteria do not depend on each other, it is easily
seen that as many pairs of imaginary roots as the number of non-satisfied
conditions exist. But even if these conditions all hold in one single equation, it
hence nevertheless does not follow that no imaginary roots are given; it can
even happen that, because there is no reason against it, all roots are imaginary.
Therefore, one has to be careful that not more is attributed to these criteria
than it can actually attributed to them considering the principles whence they
were deduced.

§324 But it is easily clear that not every single condition, which is not met,
can indicate imaginary roots; for, in an equation of n dimensions, since one has
n + 1 terms and from the single ones except for the first and the last a criterion
can be derived, one will in total have n− 1 conditions; and nevertheless, if they
are not satisfied, the equation cannot have 2n − 2 imaginary roots, since it in
total has only n roots. But one condition alone always reveals two imaginary
roots, and since it can happen that two conditions of this kind do not show
more roots, one has to consider, whether these two conditions indicate the
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same imaginary root or not; in the first case the number of imaginary roots
will not increase, in the second on the other hand, since the conditions involve
completely different letters, each one of them will show two imaginary roots.
So, even though it was

AA <
2n

1(n − 1)
B and BB <

3(n − 1)
2(n − 2)

AC,

hence nevertheless not necessarily four imaginary roots are indicated, but
both of them might indicate the same two roots. On the other hand, if it was

AA <
2n

1(n − 1)B
and CC <

4(n − 2)
3(n − 3)

BD

while BB > 3(n−1)
2(n−2) AC, four imaginary roots will be indicated.

§325 Therefore, from the criteria immediately following each other for ima-
ginary roots it does not follow more than from one; but if they proceed in
an interrupted order that between each two at least one other criterion was
skipped, then from each one of them one can conclude two imaginary roots.
This consideration yields the following rule. Except for the first and the last
term write the coefficients found from the criteria before over the single terms
of the propounded equation this way

2n
1(n − 1)

3(n − 1)
2(n − 2)

4(n − 2)
3(n − 3)

5(n − 3)
4(n − 4)

etc.

xn − Axn−1 + Bxn−2 − Cxn−3 + Dxn−4 − etc. = 0

+ · · · · · · · · · · · · etc.

Then examine the square of each coefficient, whether it is larger or smaller
than the fraction written over it multiplied by the product of the corresponding
coefficients; in the first case attribute the sign + to the term, in the second the
sign −; but always attribute term the sign + to the first and the last. Having
done this the equation will have at least as many imaginary roots as variations
in the given signs occur.
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§326 This is the rule found by Newton to explore the imaginary roots of
each equation; but one has to pay attention, as we already mentioned, since it
can happen that this equation has more imaginary roots than one detects by
means of this method. Hence others tried to find other similar rules which
then would yield the number of imaginary roots more exactly, such that the
true number of roots would exceed the number which the rule gives less often.
In this regard, especially the rule of Campbellus added to Newtons universal
Arithmetic stands out, which will therefore be conveniently explained here,
even if it is not perfect. It is based on this lemma: If α, β, γ, δ, ε etc. were some
quantities and their number is m, put the sum of these quantities

α + β + γ + δ + etc. = S,

the sum of the squares

α2 + β2 + γ2 + δ2 + etc. = V,

and it will be V > 0. But because the product of each two is

αβ + αγ + αδ + βγ + βδ + etc. =
SS − V

2
,

it will be (m− 1)V > SS−V or mV > SS. For, if the squares of the differences
of two quantities are taken, their sum will be

= (α − β)2 + (α − γ)2 + (α − δ)2 + (β − γ)2 + (β − δ)2 + etc.

= (m − 1)(α2 + β2 + γ2 + δ2 + etc.)− 2(αβ + αγ + αδ + βγ + etc.)

= (m − 1)V − 2
SS − V

2
= mV − SS.

Therefore, since the sum of real squares is always positive, it will be

mV − SS > 0 and hence mV > SS.

§327 Having given this lemma in advance, if one has this equation

xn − Axn−1 + Bxn−2 − Cxn−3 + Dxn−4 − Exn−5 + Fxn−6 − etc. = 0

and all its n roots were real, which we want to be a, b, c, d, e etc., it will be, as
it is known from the nature of equations,
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numbers of terms

A = a + b + c + d + etc. n

B = ab + ac + ad + bc + bd + etc.
n(n − 1)

1 · 2
C = abc + abd + abe + acd + bcd + etc.

n(n − 1)(n − 2)
1 · 2 · 3

B = abcd + abce + abde + etc.
n(n − 1)(n − 2)(n − 3)

1 · 2 · 3 · 4

etc.

Now take the squares of these single terms and put

P = a2 + b2 + c2 + d2 + etc.,

Q = a2b2 + a2c2 + a2d2 + b2c2 + etc.,

R = a2b2c2 + a2b2d2 + a2b2e2 + a2c2d2 + etc.,

S = a2b2c2d2 + a2b2c2e2 + a2b2d2e2 + etc.

etc.;

but from the nature of combinatorics it will be

P = A2 − 2B,

Q = B2 − 2AC + 2D,

R = C2 − 2BD + 2AE − 2F,

S = D2 − 2CE + 2BF − 2AG + 2H

etc.

§328 By means of the lemma stated in advance we will therefore have

nP > AA,
n(n − 1)

1 · 2
Q > BB,

n(n − 1)(n − 2)
1 · 2 · 3

R > CC,

n(n − 1)(n − 2)(n − 3)
1 · 2 · 3 · 4

S > DD
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etc.

Therefore, if the values found before are substituted for the values P, Q, R
etc., we will obtain the following properties of the real roots

nAA − 2nB > AA or AA >
2n

n − 1
B,

n(n − 1)
1 · 2

BB − 2n(n − 1)
1 · 2

AC +
2n(n − 1)

1 · 2
D > BB

or

BB >
2n(n−1)

1·2
n(n−1)

1·2 − 1
(AC − D)

and in like manner the following equations yield

CC >
2n(n−1)(n−2)

1·2·3
n(n−1)(n−2)

1·2·3 − 1
(BD − AE + F),

DD >
2n(n−1)(n−2)(n−3)

1·2·3·4
n(n−1)(n−2)(n−3)

1·2·3·4 − 1
(CE − BF + AG − H).

Therefore, the square of each coefficient is not only compared to the product
of the closest terms, but also to the rectangles of two equally distant ones,
nevertheless in such a way that the signs of these rectangles alternate.

§329 Therefore, except for the first and the last one has to write the fractions,
whose numerators are the binomial coefficients of the same power multiplied
by two and whose denominators are the same binomial coefficients decreased
by 1, over the single terms of the equation. So, by considering quadratic, cubic,
fourth order equations etc., if their roots all were real, it will be

4
1

x2 − Ax + B = 0; A2 > 4B;

For the cubic equation

12



6
2

6
2

x3 − Ax2 + Bx − C = 0

it will be

A2 > 3B and B2 > 3AC.

For the forth order equation

8
3

12
5

8
3

x4 − Ax3 + Bx2 − Cx + = 0

it will be

A2 >
8
3

B, B2 >
12
5
(AC − D), C2 >

8
3

BD.

For the equation of the fifth order

10
4

20
9

20
9

10
4

x5 − Ax4 + Bx3 − Cx2 + Dx − E = 0

it will be

AA >
10
4

B, B2 >
20
9
(AC − D), C2 >

20
9
(BD − AE) and D2 >

10
4

CE.

For the equation of the sixth order

12
5

30
14

40
19

30
14

12
5

x6 − Ax5 + Bx4 − Cx3 + Dx2 − Ex + F = 0

it will be

A2 >
12
5

B, B2 >
30
14

(AC − D), C2 >
40
19

(BD − AE + F),

D2 >
30
14

(CE − BF), E2 >
12
5

DF.

etc.
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§330 Therefore, if a certain condition is not satisfied, it will be a sign that
at least two imaginary roots are contained in the propounded equation. But
because, if the single conditions are not fulfilled, the equation cannot have
twice as many imaginary roots, one has to argue in these cases, as we men-
tioned before for Newton’s rule. If the square of a certain term was larger
then the fraction written over it multiplied by the product of the closest and
equally distant terms, then attribute the sign + to this term, otherwise the
sign −; but always attribute the sign + to the first and the last term. Having
done this check the progression of the signs, and as often as a variation occurs,
an imaginary root will be indicated. Therefore, if this rule indicates more
imaginary roots than Newton’s rule, it will be closer to the truth. Nevertheless,
it can happen that the equation has more imaginary roots than each of the
rules indicates.

§331 Therefore, we would make a mistake, if we wanted to use these criteria
as perfect sign for real and imaginary roots, since it can happen that the
equation has more imaginary roots than these criteria indicate; and the error
could be the greater, the higher the degree of the propounded equation was.
For, in the case of quadratic equations these criteria are true in such a way that,
if they do not indicate any imaginary roots, the equation will also have none.
But the cubic equation can have two imaginary roots, even though both rules
(they coincide in this case) do not exhibit them. Therefore, to someone wanting
to investigate these cases let this general cubic equation be propounded

3 3

x3 − Ax2 + Bx − C = 0;

if in this it was AA > 3B and BB > 3AC, none of both rules indicates
imaginary roots. But above (§ 306) we saw that for this equation to have
imaginary roots, at first it is required that it is B < 1

3 AA, which condition also
both rules require. Therefore, let B = 1

3 AA − 1
3 FF and it is necessary that C is

contained within these boundaries

1
27

A3 − 1
9

AFF − 2
27

f 2 and
1
27

A3 − 1
9

A f f +
2
27

f 3.

But both rules only demand that it is C < BB
3A , this means
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C <
1
27

A3 − 2
27

A f f +
f 4

27A
.

This condition can hold, even though C is not contained within the mentioned
boundaries.

§332 For, let

C =
1
27

A3 − 2
27

A f f +
f 4

27A
− gg

and the rules will indicate no imaginary roots. There will nevertheless be
imaginary roots, if it was either

1
27

A3 − 2
27

A f f +
f 4

27A
− gg <

1
27

A3 − 1
9

A f f − 2
27

f 3

or

1
27

A3 − 2
27

A f f +
f 4

27A
− gg >

1
27

A3 − 1
9

A f f +
2
27

f 3.

Therefore, if it was either

gg >
( f f + A f )2

27A
or gg <

(A f − f f )2

27A
,

the cubic equation will have two imaginary roots, even though none of both
rules indicates them. But here we assumed that A is a positive quantity; for,
if it was negative, by putting x = −y the equation would be transformed
into a form of such kind, in which A would be positive. Hence one can form
infinitely many cubic equations, which have two imaginary roots, even though
they are not indicated by the rule. For, let g f = ( f f+A f )2

27A + hh; it will be

C =
( f f − AA)2

27A
− gg =

1
27

A3 − 1
9

A f f − 2
27

f 3 − hh and B =
1
3

AA− 1
3

f f .

Or let it be gg = (A f− f f )2

27A − hh with hh < (A f− f f )2

27A ; it will be

C =
1
27

A3 − 1
9

A f f +
2

27
f 3 + hh and B =

1
3

AA − 1
3

f f .
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In both cases an equation having two imaginary roots which none of both
rules indicate will result. For the sake of an example let us put A = 4, f = 1;
it will be B = 5 and because of gg = 25

108 + hh it will be

C =
225
108

− 25
108

− hh =
50
27

− hh.

Hence, if it is C < 50
27 , the equation x3 − 4x2 + 5x − C = 0 will always have

two imaginary roots. But having taken gg = 1
12 − hh it must be hh < 1

12 and it
will be

C =
25
12

− 1
12

+ hh = 2 + hh.

Let hh = 1
16 and the equation x3 − 4x2 + 5x − 33

16 = 0 will have two imaginary
roots, even though none is revealed by the rules.

§333 It is even possible to form general equations of such a kind, in which
none of both rules exhibits imaginary roots, even though in most cases two or
more are contained in the equation. This happens, if two equal signs alternate,
as in

xn − Axn−1 − Bxn−2 + Cxn−3 + Dxn−4 − Exn−5 − Fxn−6 + etc. = 0

or

xn + Axn−1 − Bxn−2 − Cxn−3 + Dxn−4 + Exn−5 − Fxn−6 − etc. = 0;

here, both rules do not reveal an imaginary root. But that they most often can
contain roots of this kind, is also clear from the cubic equation x3 − Ax2 −
Bx + C = 0, which for f f = AA + 3B always has two imaginary roots, if it
was either

−C <
1

27
A3 − 1

9
A f f − 2

27
f 3 or − C >

1
27

A3 − 1
9

A f f +
2

27
f 3.

Nevertheless, also these cases can be found from the rules, if the equation is
transformed into another form by means of a substitution. Put x = y + k and
it will be
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y3+3ky23kky +k3

−Ayy−2Aky−Akk

−By −Bk

+C


= 0,

which examined according to the rule will first immediately give

(3k − A)2 > 3(3kk − 2Ak − B);

but for it to be

(3kk − 2Ak − B)2 > 3(3k − A)(k3 − Akk − Bk + C),

which is the other criterion, it is necessary that it is

BB + 3AC + (AB − 9C)k + (AA + 3B)kk > 0,

whichever value is attributed to k. Therefore, take k in such a way that this
expression has minimum value, what will happen by putting k = 9C−AB

2(AA+3B) ,
and if this expression was still > 0, it will be probable that the propounded
equation has no imaginary roots. But it will be

BB + 3AC − (AB − 9C)2

2(AA + 3B)
+

(AB − 9C)2

4(AA + 3B)
> 0

or

BB + 3AC >
(AB − 9C)2

4(AA + 3B)
.

Therefore, because it is B = 1
3 f f − 1

3 AA, it will be

4 f f
(

1
9

f 4 − 2
9

AA f f +
1
9

A4 + 3AC
)
>

(
1
3

A f f − 1
3

A3 − 9C
)2

or

4 f 6 − (A2 f 4 + 4A4 f f + 108AC f f > A2 f 4 − 2A4 f 2 − 54AC f f + A6 + 54A3C+ 729CC
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or

4 f 6 > 9A2 f 4 − 6A4 f f − 162AC f f + A6 + 54A3C + 729CC,

whence having taken factors it will have to be

(2 f 3 + A3 − 3A f 2 + 27C)(2 f 3 − A3 + 54A3C + 27C) > 0.

And hence the rules will show imaginary roots, if it was either

C > − 1
27

A3 +
1
9

A f 2 − 2
27

f 3 and C > − 1
27

A3 +
1
9

A f 2 +
2

27
f 3

C < − 1
27

A3 +
1
9

A f 2 − 2
27

f 3 and C < − 1
27

A3 +
1
9

A f 2 +
2

27
f 3.

These are the same conditions which we found above [§ 306]. Therefore, it is
plain that by means of an appropriate transformation the rules given in this
chapter can be stated in such a way that they are always true, even though
they are converted.

§334 From these principles also Harriot’s rule can be demonstrated, by which
any arbitrary equation is predicted to have as many positive roots as there are
variations of the signs, but as many negative as there are successions of the
same sign; but this rule only holds for real roots. Therefore, let us put that the
equation

xn − Axn−1 + Bxn−2 − Cxn−3 + Dxn−4 − etc. = 0

has only real and positive roots and its differential

nxn−1 − (n − 1)Axn−2 + (n − 2)Bxn−3 − etc. = 0

will have not only also have only real and positive roots, but the roots of
this one will also constitute the boundaries of the roots of the propounded
equation. Furthermore, having put x = 1

y this equation

1 − Ay + By2 − Cy3 + Dy4 − etc. = 0

will have only real positive roots, but they are the reciprocals of the others, such
that the roots, which are the maxima in that equation, are the minima in this
one. Having constituted all this, if that propounded equation is continuously
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differentiated until one gets to an equation of first order, which will be
xn − 1

n A = 0 (§ 317), the root of this one will still be positive and hence the
coefficient of the second term will have the sign −, as we assumed. But if
this coefficient would have the sign +, then it would certainly follow that
the propounded equation has not only positive real roots, but at least one
will be negative, and of course the one, which corresponds to the mentioned
boundaries.

§335 If the propounded equation is converted into its reciprocal and is diffe-
rentiated, then x is substituted again and the differentiations are continued
until one gets to a simple equation, which from § 320 will be of this kind
Ax − 2

n−1 B = 0, its roots must therefore also be positive, if the propounded
equation has only real and positive roots, and hence the second and the third
term will have different signs. Therefore, if these two terms have the same si-
gns, at least one negative root will be indicated corresponding to the boundary
assigned in this equation, which will different from the boundary indicated by
the equation, since here they were once converted into its reciprocals; hence
one concludes, if the three initial terms of the equation have equal signs, that
then two negative roots will be indicated.

§336 In like manner, if the conversions and differentiations are done ac-
cording to § 320 and are continued until one gets to the simple equation
bx − 3

n−2 C = 0, also the roots of this equation must be positive, if all roots of
the propounded equation were positive, of course; hence, if the third and the
fourth term have equal signs, one negative root will be indicated. And so forth,
if any two contiguous terms have the same sign, one negative root will be
indicated; and hence, no matter how many successions of the same sign occur,
the propounded equation will have at least as many negative roots, since these
single criteria refer to different boundaries. But if the propounded equation
is put to have only negative roots, then, because the roots of all differential
equations deduced from it must also be negative, all terms need to have the
same sign. Hence, if two contiguous terms have different signs, from them at
least one positive root will be concluded. And in like manner, no matter how
many variations of the signs of two terms occur in the propounded equation,
at least as many positive roots are concluded to be contained in the equation.
Therefore, since each equation has as many roots as there are combinations of
two contiguous signs, and not more, it follows that each equation, whose roots
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are all real, has as many positive roots as there were variations of contiguous
signs, but has as many negative roots as there were iterations of the same sign.
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